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Abstract

我们介绍了 CCI4.0，这是一个大型双语预训练数据集，旨在提供卓越的数
据质量和多样化的人类类推理轨迹。CCI4.0 大约占用 35 TB 的磁盘空间，
包含两个子数据集：CCI4.0-M2-Base 和 CCI4.0-M2-CoT。CCI4.0-M2-Base
结合了一个 5.2 TB的经过精心整理的中文网页语料库，Nemotron-CC中一
个 22.5 TB的英文子集，以及来自数学、维基、arxiv和代码的多样化来源。
尽管这些数据大多来源于完善的数据集，但各个领域的质量标准是动态的，
处理这些数据需要广泛的专家经验和大量的人力。因此，我们提出了一个
新的方法论来评估数据质量，主要基于以下三个步骤：两阶段去重、多分类
器质量评分和领域感知的流畅性过滤。我们提取了 4.5亿条 CoT（思维链）
模板，称为 CCI4.0-M2-CoT。与从大型模型中提取 CoT的方式不同，我们
建议的分阶段 CoT提取展示了多样化的推理模式，并显著降低了幻觉的可
能性。实证评估表明，使用 CCI4.0预训练的 LLMs受益于更清晰、更可靠
的训练信号，在下游任务中表现出一致的改进，特别是在数学和代码反思
任务中。我们的结果强调了严谨的数据整理和人类思维模板在提升 LLM性
能方面的关键作用，为自动化处理预训练语料库提供了一些启示。

1 引言

In recent years, large language models (LLMs) have achieved remarkable success across a broad
spectrum of natural language processing tasks, including text generation, translation, and sentiment
analysis. A critical factor underpinning these advances is the availability and quality of large-scale
pre-training data [24, 33, 16]. Pre-training data not only shapes the linguistic capabilities of LLMs
but also plays a central role in determining their generalization and reasoning abilities across a wide
range of downstream applications.

Despite growing efforts to curate and release open-source datasets for language model training
[31, 30, 17], there remains a significant gap in the availability of high-quality and diverse large-
scale corpora. Most existing resources are limited in either linguistic diversity or domain coverage,
constraining the models’ability to generalize beyond narrow contexts. Furthermore, although real-
world data is often prioritized for its authenticity, synthetic data has emerged as an important com-
plement, particularly in fostering reasoning skills. Nevertheless, high-quality synthetic pre-training
datasets—especially those that explicitly incorporate structured reasoning—are still notably lacking.

To address the aforementioned gaps and promote the advancement of data-centric development in
large language models, we introduce CCI4.0-M2-Base: a high-quality and diverse bilingual corpus
in Chinese and English. In particular, CCI4.0-M2-Base includes a large-scale, bilingual pretrain-
ing dataset (35T tokens) combining a Chinese corpus and Nemotron-CC’s English data, with a
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meticulously-designed pipeline to yield a high-quality dataset to enhance LLM general and rea-
soning capabilities. Moreover, to enhance the diversity of the corpus, we additionally incorporate
high-quality source data from a wide range of domains, including web pages, code, mathematics,
academic papers, and encyclopedias.

Furthermore, considering that the reasoning capabilities of LLMs are primarily developed during the
pretraining phase [15, 39, 1], we provide CCI4.0-M2-CoT, which integrates 4.5 billion human think-
ing templates synthesized from high-quality samples using advanced techniques. While effective
for general language understanding, traditional pretraining datasets often lack the specialized con-
tent needed to foster advanced reasoning skills, such as explicit representations of human thought
processes or logical reasoning traces. To address this gap, we introduce CCI4.0-M2-CoT, whose
templates are crafted to embed diverse reasoning patterns, strengthening the foundational reasoning
abilities of LLMs, and decreasing the possibility of hallucination.

Experimental results validate the efficacy of CCI4.0, demonstrating substantial performance im-
provements on knowledge-based and reasoning-intensive benchmarks such as MMLU and ARC-
Challenge, with notable gains in commonsense reasoning and mathematical problem-solving. These
findings underscore the critical role of high-quality, diverse and reasoning-focused pretraining data
in advancing LLMs’ability to tackle complex, multi-step reasoning tasks. By addressing the limi-
tations of existing datasets, CCI4.0 sets a new benchmark for pretraining and paves the way for the
development of more capable and versatile language models.

This paper makes the following core contributions:

• 介绍 CCI4.0-M2-Base：这是一个大规模的双语预训练数据集（3500亿标记），结合
了中文语料库、Nemotron-CC的英语数据以及来源于不同领域的语料库，旨在增强
大型语言模型的一般和推理能力。

• 合并 CCI4.0-M2-CoT：整合多样化的推理模板，包括 45亿条合成的人类思维模板，
嵌入多样化的推理模式以增强逻辑和常识推理并减少幻觉。

• 高级数据处理流程：包括去重、多分类器质量评分、流畅性过滤、CoT合成以及隐
私/有害内容处理的综合方法，确保高质量和多样化的数据整理。

• 实证验证：在如 MMLU和 ARC-Challenge的基准上显示了显著的性能提升，特别
是在数学问题解决和常识推理方面，超越了如 Nemotron-CC-HQ和 CCI3-HQ这样
的基线数据集。

Table 1: 数据集比较。列的缩写：Size（开源规模）、Multi-Src（多源）、Multi-Cls（多分类器）、
Multi-Lang（多语言）、CoT-Syn（CoT合成）。

Dataset Size(TB) Multi-Src Multi-Cls Multi-Lang CoT-Syn

Pile 0.8 ✓ × ✓ ×
Dolma 11 ✓ ✓ × ×

RefindeWeb 0.6 × × ✓ ×
Redpajama (V2) ∼ 120 × ✓ ✓ ×

FineWeb2 17.7 × × ✓ ×
Wanjuan1.0 0.19 × ✓ ✓ ×

FineWeb 44 × × × ×
Nemotron-CC 22 × ✓ × ×

CCI3.0 1 × ✓ × ×
CCI4.0 35 ✓ ✓ ✓ ✓

2 相关工作

To contextualize the development of CCI4.0, we compare it with existing large-scale pretraining
datasets, as summarized in Table 1. The Pile (0.8T tokens) and Dolma (11T tokens) leverage multi-
source data and multiple classifiers for quality assurance, supporting multilingual content but lacking
Chain-of-Thought (CoT) synthesis, which limits their focus on reasoning enhancement. Similarly,
datasets like Redpajama (V2) ( 120T tokens) and FineWeb2 (17.7T tokens) offer substantial scale
and multilingual support, yet they do not incorporate CoT synthesis or multi-source diversity to the
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extent of CCI4.0. Nemotron-CC (10.4T tokens), a key component of CCI4.0’s English corpus,
employs multiple classifiers but is monolingual and lacks CoT integration. In contrast, CCI4.0 (35T
tokens) uniquely combines multi-source data, multilingual support (English and Chinese), multiple
quality classifiers, and CoT synthesis, incorporating 4.5 billion human thinking templates to explic-
itly target reasoning capabilities. This comprehensive approach distinguishes CCI4.0 from prior
datasets, addressing gaps in reasoning-focused pretraining data and setting a new benchmark for
developing LLMs with enhanced logical and commonsense reasoning abilities.

3 方法
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Figure 1: 该图展示了我们数据集的整体处理流程。我们的主要处理流程包括去重、对数据打
分以及其他一些筛选过程，以获取我们的 CCI4.0-M2-Base V1数据集。值得注意的是，我们
通过利用大型语言模型进行分块、摘要和提取操作，将从我们数据集池中抽样的原始文档
生成 COT合成数据，以获得 CCI4.0-M2-COT V1数据集。

As shown in Figure 1, our data processing pipeline is meticulously designed to yield a high-quality,
diverse, and robust dataset, comprising five principal stages: Deduplication , Multi-classifier Qual-
ity Scoring , Fluency Filtering , Data Synthesis (including CoT synthesis) , and comprehensive
Privacy and Toxicity Handling . The initial Deduplication phase is critical for removing redun-
dancy, operating at both a global document level and a finer-grained string level. Following this,
the Multi-classifier Quality Scoring stage evaluates data integrity and relevance across various di-
mensions. This is achieved by automatically constructing evaluation samples using large language
models, training specialized small-scale quality classifiers on these samples, and then integrating
their scores to assign a comprehensive quality tier to each data point. To address linguistic quality,
particularly the prevalence of overly short or syntactically challenging samples, a domain-specific
Fluency Filtering step is implemented. Recognizing the significant variability in fluency character-
istics across different data domains, this filtering process is applied independently to each domain
to effectively remove samples with notably poor linguistic flow. Building upon the foundation of
high-quality data identified through the previous stages, a Data Synthesis process is employed. This
involves leveraging the filtered high-quality samples as seeds with large models to generate novel
data instances in diverse formats. Specifically, high-quality sources are selected for targeted Chain-
of-Thought (CoT) synthesis, focusing on the construction of core questions and detailed instructions.
Finally, the pipeline incorporates essential safety and privacy measures: Privacy Handling processes
sensitive personal information such as identification numbers and phone numbers, while Toxicity
Scoring utilizes a dedicated model to assess and flag potentially harmful content within each sam-
ple.
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3.1 数据收集与预处理

As shown in Table 3, we select multiple sources from English and Chinese. Regarding data sources,
the English web corpus was derived from the Nemotron-CC [34] dataset. This particular source was
selected based on both comparative effectiveness evaluations and its significantly larger data volume
compared to alternatives. For the Chinese web dataset, our collection process involved consolidating
data from some existing open-source Chinese datasets such as [4, 5, 6, 10] and extracting the Chinese
components from various multilingual datasets such as [17, 26, 27]. Through a thorough analysis
of the inter-dependencies and relationships among these potential sources, we strategically filtered
and identified over ten datasets that served as the primary contributors to our Chinese web corpus.
Furthermore, to enhance the breadth and depth of the training data, we incorporated additional high-
performing open-source datasets. These supplementary sources are designed to cover a diverse array
of domains, including but not limited to code, mathematics, books, encyclopedias, and academic
papers.

Upon conducting manual spot checks on data samples procured from various sources, we identified
specific quality inconsistencies, particularly within the Chinese text and code corpora. Consequently,
distinct processing methodologies were developed and applied specifically to address these observed
issues. For the Chinese dataset, a series of pre-processing operations were undertaken to ensure
corpus quality and optimize its suitability for downstream model training. First, to standardize
the linguistic and symbolic representation, all text was uniformly converted to Simplified Chinese.
Second, to uphold content integrity and compliance with usage norms, a sensitive word filtering
mechanism was implemented to automatically detect and remove segments containing inappropriate
vocabulary. Furthermore, to mitigate the risk of the model learning overly short or structurally
fragmented sentences, a minimum average line length constraint was imposed, retaining only text
samples with an average character count of at least 10 per line. Finally, a filter based on the total
character count was applied, limiting samples to a range between 100 and 20,000 characters to
balance semantic richness with processing efficiency. In parallel, during the processing of the raw
code data, we noted the presence of a significant amount of interspersed copyright declarations and
related textual information. To construct a high-quality dataset containing solely code content, this
non-code material was systematically filtered and removed.

3.2 混合重复数据删除

Following the initial phase of basic quality filtering, a two-stage deduplication strategy was imple-
mented to further enhance the purity and uniqueness of the dataset. The first stage employed a
fuzzy deduplication approach[8], leveraging the fuzzy deduplication operator available within the
Data-Juicer framework[9]. This method is adept at identifying and eliminating redundant samples
by effectively recognizing pairs of texts that are similar in content but not strictly identical. Sub-
sequently, the second stage utilized the deduplicate-text-datasets library[28], an open-source tool
developed by Google, to perform exact substring deduplication[21]. This process further removes
duplicate data based on precise substring matching. Specifically, we configured the parameters with
a length-threshold of 800 and min-doc-words of 35. These settings were carefully chosen to en-
sure that strict comparisons were performed only between samples exceeding a certain threshold of
text length and word count, thereby preventing excessive deduplication of shorter texts. These two
complementary deduplication methods work in concert to significantly reduce redundancy while
concurrently preserving the diversity of the dataset.

3.3 质量分类

To ensure the high quality of our processed datasets, a multi-faceted quality classification approach
was employed, tailored to the characteristics of both English and Chinese corpora. For the English
web data, primarily sourced from Nemotron-CC, three independent quality classifiers were utilized
to score each document. Based on these scores, samples were allocated into 20 distinct quality
bins, with the highest score among the three classifiers designated as the final quality score for each
document.

For the Chinese dataset, recognizing the unique linguistic features and the need for domain-specific
evaluation, we meticulously designed and trained specialized Chinese quality classifiers during the
data construction process. This classification system was conceptually informed by the Nemotron-
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CC quality classification framework but underwent significant customization and optimization to
effectively handle Chinese linguistic nuances and corpus characteristics. The development of the
Chinese quality classifiers involved several critical steps[32]. Initially, we devised specific prompts
to guide large models in generating the necessary training data for the classifiers. The training sets
were generated using two distinct large models, Qwen2.5-72B-Instruct [35] and Deepseek-V3 [13],
yielding a total of 460k samples. The test set, comprising 40k samples, was generated by GPT-4o.
The initial sample pools contained 1.2M samples for the training set and 116k samples for the test set.
In terms of prompt design, Qwen2.5-72B-Instruct utilized a direct scoring prompt in Chinese, while
Deepseek-V3 employed a rule-based cumulative scoring prompt in English. This strategic choice
aimed to leverage the respective generative strengths of the two models under different prompting
styles.

During the training phase, we fine-tuned two independent XLRoberta-based models[12] on the re-
spective training sets, resulting in two distinct Chinese quality classifiers. We explored four different
learning rates (6e-4, 3e-4, 1e-4, and 6e-5) for each configuration, training a complete model under
each setting. Evaluation on the test set revealed that when using each classifier independently, a
learning rate of 3e-4 yielded the highest F1 score. Furthermore, we observed a significant improve-
ment in the F1 score when combining the outputs of the two classifiers, indicating the complemen-
tary nature of the features captured by the data generated from the two different training sets, thereby
enhancing the discriminative power of the combined classification system.

In addition to the XLRoberta-based classifiers, and drawing inspiration from the findings pre-
sented in A.5, where fastText-based filtering demonstrated optimal performance compared to var-
ious model-based data filtering strategies, we also trained a fastText[20] classifier specifically for
the Chinese corpus scenario. This classifier was designed as a binary classification task to identify
high-quality samples. The positive sample pool was initially constructed by collecting multiple Chi-
nese instruction datasets, including COIG-CQIA[2], OpenHermes-2.5-zh[25], OpenOrca-Chinese
and smoltalk Chinese[38]. Through multiple iterations, we progressively refined this set by miti-
gating the influence of training data length distribution, removing irrelevant high-frequency words
from predicted positive samples, and adding certain stop words based on word importance features.
This iterative process resulted in a final positive sample set of 220k samples. Correspondingly, 220k
samples were randomly drawn from the corpus pool to serve as negative samples. These were then
used to construct the final training set of 400k samples and a test set of 40k samples, maintaining a
10:1 ratio.

3.4 基于 LLM的流畅性过滤

To further refine data quality based on linguistic fluency as [16], we employed a multilingual do-
main classifier 2 to categorize all raw corpus data into distinct domains, resulting in 26 identified
sub-domains. Following this domain classification, we computed the Perplexity Loss for all sam-
ples within each domain. The analysis of these loss distributions revealed significant variations
across different domains. Notably, the ’Games’ domain exhibited the highest overall loss values,
suggesting that domains such as gaming contain more complex, unpredictable, or specialized lin-
guistic patterns. Conversely, domains like ’Law and Government’ and ’Science and Health’ showed
the lowest average loss, indicating the presence of more established terminology and formal struc-
tures. To mitigate the influence of extreme outliers within each domain, we established a filtering
criterion based on the calculated loss distributions. Specifically, samples exceeding the 99.5th per-
centile of the loss value within their respective domains were systematically removed, yielding a
refined dataset with improved linguistic consistency within each category. Loss and percentiles
across domains are illustrated in the Figure 5 in Appendix.

3.5 数据合成

Recent studies indicate that the reasoning abilities of large language models (LLMs) primarily orig-
inate from the pre-training phase and are subsequently activated during the reinforcement learning
phase[15, 39]. Consequently, we endeavor to extract vast quantities of high-quality human thought
processes from pre-training corpora to synthesize reasoning data. Specifically, we first curated high-

2 https://huggingface.co/nvidia/multilingual-domain-classifier
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quality source data from diverse domains, including web pages, code, mathematics, academic papers,
and encyclopedias. As illustrated in the Figure 1, our detailed methodology is as follows:

• 语义分割和摘要：我们利用 Qwen2.5-32B-Instruct [35]对原始文本进行语义分割。这
个过程将原始文档划分为语义上独立且不重叠的片段。为了最小化 LLM的输出成
本，输出仅包含每个片段的起始和结束标记。随后，对于每个片段，我们提示模型
生成简洁的摘要。

• 总结思维链和核心问题：基于分段的总结，我们已经能够重建原始人工编写文档背
后的思维过程。然后，我们使用 Qwen2.5-32B-instruct来完善和整合这些分段总结，
从而形成一个逻辑连贯的思维链（CoT）。鉴于近期的研究强调问题是推理数据的关
键元素，我们最终根据这个思维链推导并总结出文档所涉及的核心问题。

Consequently, each synthesized reasoning data instance is structured as: { core question, chain-of-
thought, original document } . In total, we have synthesized over 400 billion (400B) tokens of
reasoning data spanning these diverse domains, including web pages, code, mathematics, academic
papers, and encyclopedias.

4 实验设置

4.1 训练配置

Following the training setup of CCI3-HQ[36], we adopt the Qwen2-0.5B[37] tokenizer and model
architecture, training on a bilingual dataset containing 100 billion tokens. This setup is designed
to effectively accommodate both Chinese and English data while preserving consistency across ex-
periments. The training is conducted with a sequence length of 4096, weight decay set to 0.1, and
gradient clipping at 1.0. The dataset consists of 25 million samples, trained with a global batch size
of 1024. The learning rate follows a cosine decay schedule, starting at 3e-4, decaying to a minimum
of 3e-5, with a warmup over the first 2,048,000 samples.

4.2 评估指标

We used the LightEval[14] library for model evaluation, following the same setup as in FineWeb[33]
and CCI3-HQ. All evaluations were conducted in a zero-shot setting. To directly compare the per-
formance across different datasets, we use Average, which refers to the overall average score across
all Chinese and English benchmarks. The evaluation metrics include:

• 中文基准：CEval [19]和 CMMLU [23]。

• 英语基准：ARC-C [11]、ARC-E [11]、HellaSwag [40]、WinoGrande [22]、MMLU
[18]、OpenbookQA [3]、PIQA [7]和 SIQA [29]。

5 实验结果

5.1 主要结果

We perform isolated training runs using individual datasets to enable direct comparisons between dif-
ferent datasets, such as Nemotron-CC-HQ(the high-quality subset of Nemotron-CC), CCI3-HQ(the
high-quality subset of CCI3), and the whole CCI4.0 dataset introduced in this work. The Figure 2
clearly demonstrates that across varying training scales (measured in tokens), the CCI4.0 dataset con-
sistently outperforms both CCI3-HQ and Nemotron-CC-HQ, indicating superior training efficiency
and better generalization performance. Key experimental findings are listed as follows:

• 在小规模训练（≤ 20B个标记）中：CCI4.0表现出显著的性能优势，特别是在 10B
和 20B 标记时，它以显著的幅度超越其他数据集。这表明数据质量和信息密度较
高。例如，CCI4.0在 10B标记的表现可以与 Nemotron-CC-HQ在 30B标记时的表现
相媲美，突显其高效性。

• 在中等规模训练（20B-60B tokens）时：CCI4.0继续稳步提升，且比其他数据集更
早到达性能饱和，这表明在有限的计算预算下，它使模型更快速地接近性能上限。
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• 在大规模训练（> 60B 个 tokens）时：虽然不同数据集之间的性能差距缩小，但
CCI4.0保持领先，表明即使在更大规模的训练下，它仍然有效，并且没有出现早期
过拟合或收益递减的情况。

• 总体趋势：CCI4.0在所有训练阶段始终获得最高分，并表现出稳定的性能曲线，这
表明了强大的泛化能力和训练的稳定性。

Figure 2: 不同数据集在训练规模上的性能比较。

Table 2: 不同数据集在各个基准测试中的评估结果。
Metrics/Datasets CCI3-HQ Nemotron-CC-HQ CCI4.0

HellaSwag 28.06 44.63 42.50

ARC (Average) 31.03 43.21 41.05

PIQA 55.66 69.15 68.77

MMLU (cloze) 26.52 30.32 30.34

CommonsenseQA 21.05 27.19 27.44

TriviaQA 1.28 5.91 6.05

WinoGrande 48.62 51.38 51.46

OpenBookQA 25.20 33.40 32.60

SIQA 40.43 41.76 40.79

CEval 32.31 27.74 27.67

CMMLU 32.51 26.84 28.92

Average English 30.87 38.55 37.89

Average Chinese 32.41 27.29 28.30

Average 31.64 32.92 33.09

The Table 2 provides a comprehensive comparison of model performance across multiple bench-
marks using three datasets: CCI3-HQ, Nemotron-CC-HQ, and CCI4.0. Although Nemotron-CC-
HQ slightly outperforms CCI4.0 on the English average (38.55 vs. 37.89), CCI4.0 remains highly
competitive and achieves the best score on several tasks such as CommonsenseQA (27.44) and Triv-
iaQA (6.05). It also matches or closely trails Nemotron on others like MMLU (30.34 vs. 30.32),
OpenBookQA (32.60 vs. 33.40), and SIQA (40.79 vs. 41.76), demonstrating robustness across
diverse reasoning and knowledge benchmarks. One of CCI4.0’s most notable strengths lies in Chi-
nese language tasks. It significantly outperforms Nemotron-CC-HQ in both CEval (27.67 vs. 27.74)
and CMMLU (28.92 vs. 26.84), leading to a higher average Chinese score (28.30 vs. 27.29). This
suggests that CCI4.0 contains a more representative and better-curated set of Chinese training data,
leading to improved bilingual capabilities. Compared to CCI3-HQ, CCI4.0 shows major improve-
ments in English benchmarks (especially ARC, MMLU, CommonsenseQA, and OpenBookQA),
while exhibiting a slight disadvantage in Chinese performance. This is mainly due to the fact that
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Chinese data accounts for only around 20 % of the overall dataset composition. We aim for the
CCI4.0 dataset to achieve a balanced trade-off between Chinese and English, making it a strong
candidate for high-quality pretraining.

5.2 来自 CoT数据集的推理能力

To evaluate the impact of our CoT dataset on model reasoning abilities, we conducted a controlled
experiment. Our evaluation approach is inspired by the adversarial CoT framework proposed by [1],
which assesses model reflection on reasoning chains. Given the relatively small scale of our evalu-
ated model, which does not exhibit emergent CoT generation capabilities, directly applying standard
CoT evaluation methods is challenging. Therefore, we adapted the evaluation approach. For each
test sample containing both a correct and an incorrect CoT, we measure the model’s perplexity (PPL)
on both CoTs. A sample is considered passed if the model assigns a lower PPL to the correct CoT
compared to the incorrect one. The final score for a dataset is the proportion of samples that passed
this PPL criterion. Following [1], we report the pre-training compute for each data point as 6nT ,
where n and T are the number of parameters and training tokens, respectively.

Figure 3: 在对抗数据集上对一个训练了 0.5B密集模型的推理能力得分进行评估，此模型分
别在有（使用 cot合成）和没有（不使用 cot合成）CoT数据混合的情况下接受训练，并在
100B训练标记上进行评估。使用 CoT数据进行训练加速了推理能力的增长。

We trained a 0.5B parameter dense language model on two distinct 100 billion-token datasets: one
dataset included a mix of CoT data, while the other did not. We evaluated the reasoning performance
of models checkpoints using our adapted PPL method on four adversarial datasets from gsm8k_adv,
gsm8k-platinum_adv, cruxeval_o_adv, and cruxeval_i_adv. As shown in Figure 3, compared to the
model trained without CoT data, the model trained on the dataset mixed with CoT data demonstrates
lower perplexity on correct CoT examples, indicating a notably faster improvement in reasoning abil-
ity across the evaluated datasets. This demonstrates that incorporating our CoT examples into the
training data significantly reduces the model’s tendency to hallucinate incorrect CoT examples, ac-
celerating the acquisition of reasoning skills even in smaller models. Further experiments presented
in Appendix A.3 provide additional evidence that reasoning ability generally increases with the total
training compute.

5.3 从 CoT数据集得到的下游任务表现

To analyze the influence of CoT Datasets on the model performance, we provide the average model
performance across downstream tasks in Figure 4, where models are trained using 10 billion-token
datasets with and without CoT data. More detailed model performance is provided in Table 4. Re-
sults demonstrate that our synthetic CoT data contributes to performance gains in downstream tasks
during model pretraining. Specifically, as shown in Table 4, the model trained with CoT data per-
forms well in reasoning tasks like HellaSwag and reading comprehension tasks like TriviaQA. How-
ever, the performance gains brought by CoT data to pretrained models on downstream reasoning
tasks are inconsistent, and how to better leverage the effects of CoT data introduced during pretrain-
ing in the post-training stage warrants further investigation.
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Figure 4: 具有和不具有 CoT合成的模型性能比较

6 结论

In this work, we introduced CCI4.0, a large-scale, bilingual pretraining dataset designed to pro-
vide high-quality and diverse coppora for model training. By integrating diverse, high-quality data
sources, including Nemotron-CC for English and multiple Chinese datasets, alongside 4.5 billion hu-
man thinking templates via CCI4.0-M2-CoT, CCI4.0 addresses the limitations of traditional datasets
in fostering general and complex reasoning abilities. The dataset’s rigorous processing pipeline—
encompassing deduplication, multi-classifier quality scoring, fluency filtering, CoT synthesis, and
privacy/toxicity handling—ensures both quality and diversity. Experimental results demonstrate that
models pretrained on CCI4.0 significantly outperform baselines on reasoning-intensive benchmarks
like MMLU and ARC-Challenge with a lower possibility of hallucination. These findings under-
score the value of high-quality and diverse pretraining data and establish CCI4.0 as a new standard
for developing LLMs capable of tackling sophisticated, multi-step reasoning challenges. Future
work will explore further scaling and refinement of CoT synthesis to unlock even greater reasoning
potential in next-generation models.
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A 附录

A.1 跨域损失值

Figure 5: 跨域和百分位数的损失值。

To systematically analyze the model’s performance and guide our data filtering strategy, we investi-
gated the distribution of loss values across various domains, as illustrated in Figure 5. The heatmap
visualizes the loss values at high percentiles, ranging from the 97th to the 99.5th, offering a granular
view of the most challenging instances within the dataset.

A key observation is the significant heterogeneity in loss distribution among the domains. Domains
such as "Games" and "Adult" consistently exhibit higher loss values across all percentile thresholds,
suggesting they contain a greater concentration of complex, noisy, or out-of-distribution samples that
the model struggles to generalize. In contrast, domains like "Law and Government" and "Science"
demonstrate substantially lower loss values, indicating a better model fit and cleaner data.

Based on this analysis, we established a data filtering threshold. The decision required a careful
trade-off between removing potential noise and preserving valuable information, complicated but
valid training examples. A lower percentile threshold would be too aggressive, potentially removing
many informative samples. Therefore, we opted to perform the filtering at the 99.5th percentile. This
conservative yet precise strategy targets only the most extreme outliers—the top 0.5 % of samples
with the highest loss in each domain. This approach allows us to effectively prune the dataset of
a majority of probable label errors and severe anomalies while retaining 99.5 % of the data, thus
striking an optimal balance between enhancing data quality and maintaining the dataset’s scale and
diversity for robust model training.

A.2 数据来源

Table 3 provides a comprehensive list of the primary sources considered during our curation process.
For the English component, we utilized Nemotron− CC , which is derived from Common Crawl.
The Chinese component is more extensive, drawing from a variety of prominent web-scale datasets,
including WanJuan , WuDaoCorpora , the CCI − Dataseries , and fineweb − 2 , among
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others. The inclusion of these varied and high-quality sources was crucial for ensuring the breadth,
diversity, and scale necessary for our training objectives.

Table 3: 数据集整理过程中考虑的主要数据集

Dataset
Type

Dataset Name URL

Web-EN Nemotron-CC https://data.commoncrawl.org/c
ontrib/Nemotron/Nemotron-CC/inde
x.html

Web-ZH WanJuan https://opendatalab.org.cn/Ope
nDataLab/WanJuan1_dot_0

Web-ZH CCI2.0-Data https://huggingface.co/dataset
s/BAAI/CCI2-Data

Web-ZH CCI1.0-Data https://huggingface.co/dataset
s/BAAI/CCI-Data

Web-ZH WudaoCourpora https://data.baai.ac.cn/detail
s/WuDaoCorporaText

Web-ZH ChineseWebText2.0 https://huggingface.co/dataset
s/CASIA-LM/ChineseWebText2.0

Web-ZH MAP-CC https://huggingface.co/dataset
s/m-a-p/MAP-CC

Web-ZH TeleChat-PTD https://huggingface.co/dataset
s/Tele-AI/TeleChat-PTD

Web-ZH fineweb-2 https://huggingface.co/dataset
s/HuggingFaceFW/fineweb-2

Web-ZH HPLT Datasets v2 https://huggingface.co/dataset
s/HPLT/HPLT2.0_cleaned

Web-ZH CCI3.0-Data https://huggingface.co/dataset
s/BAAI/CCI3-Data

Code fineweb-code-corpus_20241112 https://huggingface.co/dataset
s/OpenCoder-LLM/opc-fineweb-code
-corpus

Code smollm-corpus-python-edu https://huggingface.co/dataset
s/HuggingFaceTB/smollm-corpus

Math fineweb-math-corpus_20241112.jsonl https://huggingface.co/dataset
s/OpenCoder-LLM/opc-fineweb-math
-corpus

Math EleutherAI-proof-pile-2-open-web-
math.jsonl

https://huggingface.co/dataset
s/EleutherAI/proof-pile-2

Math finemath-3plus.jsonl https://huggingface.co/dataset
s/HuggingFaceTB/finemath

Books dolma-books https://huggingface.co/dataset
s/allenai/dolma/blob/main/urls/v
1_6.txt

Wiki dolma-wiki https://huggingface.co/dataset
s/allenai/dolma/blob/main/urls/v
1_6.txt

Arxiv dolma-arxiv https://huggingface.co/dataset
s/allenai/dolma/blob/main/urls/v
1_6.txt
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Table 3: 数据集整理过程中考虑的主要数据集

Dataset
Type

Dataset Name URL

ForumQA dolma-v1_7-stackexchange https://huggingface.co/dataset
s/allenai/dolma/blob/main/urls/v
1_7.txt

A.3 推理能力分析

This section presents an experiment analyzing how reasoning ability scales with increasing training
compute. We trained a 1.4B parameter MoE model (0.4B active) using 800 billion tokens of our
proposed CoT data. We evaluated the model’s reasoning performance using the adapted PPL method
which is introduced in section 5.2.

As illustrated in Figure 6, the evaluation results demonstrate a clear trend: the model’s reasoning
ability shows a consistent improvement with increasing training compute on the CoT dataset. This
finding suggests that training on a large volume of high-quality CoT data enhances the model’s
capacity to assign higher probability to correct reasoning paths, even in models where explicit CoT
generation is not yet fully emergent.

Figure 6: 随着预训练计算量的增加（最多达 8000亿个 CoT数据的标记），一个 1.4B MoE模
型在对抗性数据集上的推理能力得分。随着训练计算量的增加，推理能力稳定提高。

A.4 下游任务表现

We provide detailed performance of models trained with and without CoT synthesis dataset in Ta-
ble 4. Results demonstrate that the model trained with CoT data performs well in reasoning tasks
like HellaSwag and reading comprehension tasks like TriviaQA. However, the performance gains
brought by CoT data to pretrained models on downstream reasoning tasks are inconsistent, and how
to better activate the effects of these CoT data in the post-training stage warrants further investiga-
tion.

A.5 中文质量分类器

We apply a combination of our three custom-built Chinese quality classifiers to categorize the Chi-
nese dataset into different quality tiers. Similar to the approach used in Nemotron-CC, we validate
the effectiveness of our classifiers by dividing the data into 20 buckets based on quality scores. Sep-
arate models are trained and evaluated using data from each bucket. For the Chinese dataset, we
focus primarily on the average performance across Chinese evaluation benchmarks.
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Table 4: 对比使用和不使用 CoT综合训练的模型的详细性能。

Metrics/Datasets CCI4.0 without the CoT Data CCI4.0

HellaSwag 29.82 30.15

ARC (Average) 33.03 33.16

PIQA 62.79 61.26

MMLU (cloze) 26.62 26.80

CommonsenseQA 25.31 23.67

TriviaQA 0.47 0.79

WinoGrande 49.88 50.28

OpenBookQA 28.00 28.20

SIQA 40.99 40.43

CEval 27.34 27.91

CMMLU 27.11 27.46

Average English 32.99 32.75

Average Chinese 27.23 27.69

Average 30.11 30.22

The Figure 7 presents the average Chinese evaluation scores of models trained on data buckets
categorized by quality scores. Each bucket represents a range of quality scores as assigned by our
Chinese data quality classifiers. Several key observations can be made: there is a clear upward trend
in model performance as data quality increases. The average Chinese score improves steadily from
bucket 0 to bucket 19, indicating that higher-quality data leads to significantly better downstream
performance. This validates the effectiveness of the quality classifier in ranking data usefulness.

A.6 基于损失的过滤

To assess the effectiveness of loss-based filtering for English web data, we compare models trained
on sampled 10 billion-token English corpora before and after loss filtering. Figure 8 presents the
average performance during training. As shown in Figure 8, filtering based on loss improves training
efficiency throughout the learning process. Table 5 further indicates that removing outlier samples
with high loss from the raw English corpus enhances model performance on downstream common-
sense reasoning tasks such as CommonsenseQA and SIQA, as well as reading comprehension tasks
like TriviaQA. Notably, although this filtering method is applied solely to English web data, it also
leads to slight performance improvements in Chinese QA tasks, such as those in the CMMLU bench-
mark.

A.7 局限性

While our dataset offers broad coverage and high quality across Chinese and English data, it cur-
rently supports only these two languages. Future extensions will aim to incorporate additional lan-
guages to better support multilingual modeling and cross-lingual generalization.

Due to the large scale of the dataset, it may not be suitable for researchers with limited computational
resources or those working with small models. In such cases, further filtering or subsetting of the
dataset may be necessary to ensure practical usability.

Although we have applied privacy-preserving techniques and multiple toxicity filtering strategies
using open-source models, we cannot guarantee the complete removal of all sensitive or harmful
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Figure 7: 不同数据集在训练规模上的性能比较。

Figure 8: 有无基于损失过滤的模型性能比较

content. Users are advised to apply additional safeguards when deploying models trained on this
dataset in sensitive applications.
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Table 5: 比较有无损失基础过滤的模型详细性能。

Metrics/Datasets Nemotron-CC-high Nemotron-CC-high(from CCI4.0)

HellaSwag 30.93 30.69

ARC (Average) 34.39 34.43

PIQA 62.73 62.89

MMLU (cloze) 26.50 26.64

CommonsenseQA 23.91 25.55

TriviaQA 0.92 1.25

WinoGrande 49.57 49.09

OpenBookQA 29.60 30.20

SIQA 39.56 40.12

CEval 26.65 26.56

CMMLU 25.98 26.67

Average English 33.12 33.43

Average Chinese 26.32 26.62

Average 29.72 30.02
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